EXercises lecture 1-2-3

EXercise 1.1

Suppose you are programming a 2D game in which the main character jumps into a vehicle with constant velocity of $30 \mathrm{~km} / \mathrm{h}$ in the x -direction. The vehicle is at position ($10 \mathrm{~m}, 20 \mathrm{~m}$) at frame t. Where will be the vehicle at the next frame if the frame rate is 60 FPS?

EXERCISE 1.2

Suppose a NPC police officer steps up a speed trap on a straight section of a road. He times the player who covered 400 meters in 14 seconds. If the speed limit on that section is $90 \mathrm{~km} / \mathrm{h}$, will the player have a ticket?

Exercise 1.3

Suppose the player's car is going at $60 \mathrm{~km} / \mathrm{h}$ and 5 seconds later it is going at $70 \mathrm{~km} / \mathrm{h}$? What is its acceleration?

EXERCISE 1.4

Suppose the player is driving a car and suddenly has to break. He is going at $60 \mathrm{~km} / \mathrm{h}$ and the car can decelerate at a rate of $-5.55 \mathrm{~m} / \mathrm{s}^{2}$. How much time does the player need to stop?

Exercise 1.5

Same situation but we want to know if the player will hit a car that is 20 meters in front.

EXERCISE 1.6

Suppose a player wants to launch birds from a catapult. The player catapults them at a speed of $20 \mathrm{~m} / \mathrm{s}$ at a 30 degree angle. How much time will it take a bird to come back down to the ground?

EXERCISE 1.7

Same situation but we want to know how much time it will take to hit a pig 30 meters away.

EXERCISE 1.8

Same situation but we want to know how far away the bird will hit the ground.

EXERCISE 1.9

In a platform game, the player can run off an edge to land on a lower platform. If the player runs at 10 m / s from an 8 meter high platform, how far away will he land on the ground?

EXERCISE 1.10

Suppose a ball weighting 1.5 kg is rolling down a ramp which is positioned at a 30 degree incline. What it the normal force of the ramp?

Exercise 1.11

Suppose you are programming a racing game with a car weighting 1 T . What are the static and kinetic friction forces between the rubber tires and the dry concrete flat road?

EXERCISE 1.12

Suppose a game character is pulling a ball across a field. Initially the ball is sitting still at the origin $(0,0)$ and its mass is 5 kg . The player pulls with a constant force of 400 N at an angle of 30 degrees with the x-direction of the field. The coefficient of kinetic friction is 0.25 . Where the ball will be after respectively 1,2 and 3 seconds?

EXERCISE 1.13

Imagine the player can shoot cannon balls to his opponent. At some point on its trajectory the ball speed is $100 \mathrm{~km} / \mathrm{h}$ (that's high) and the ball has a radius of 10 cm . The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and the drag coefficient of the ball is 0.47 . What is the drag force opposing the motion of the ball?

EXERCISE 1.14

Suppose a game character of volume $0.1 \mathrm{~m}^{3}$ and weighting 80 kg . What density of fluid is necessary for the character to float?

EXERCISE 1.15

Suppose a game character throws a ball with a force of 400 N on a distance of 0.75 meter. The ball has a mass of 145 g . What speed will the ball have when the character lets go of it?

EXERCISE 1.16

In a roller coaster game, the cart starts at a height of 100 meters and goes down at the bottom of the first slope. The mass of the cart and the player in it is 200 kg . During the descent, 2000 Joules of energy are lost in heat and sound. How fast the cart goes at the bottom of the slope?

EXERCISE 1.17

In a golf game, the player defines the impulse force applied to the ball. Suppose the mass of the ball is 45 g and the player input an impulse of $\binom{3}{2}$. What is the ball velocity?

EXERCISE 1.18

Suppose you want to program a game based on the Wheel of Fortune game. If the player gives the wheel an initial angular velocity of $8 \mathrm{rad} / \mathrm{s}$, and the pegs decelerate it at a rate of $2 \mathrm{rad} / \mathrm{s}^{2}$, what is its angular displacement after 3 seconds?

EXERCISE 1.19

Same situation but it takes 10 seconds to the wheel to stop. The wheel has a 3 meter radius. What is the wheel's tangential acceleration?

Exercise 1.20

In a racing game the player's car get hit by an opponent. The mass of the player's car is 1.2 T , the impact is at a distance of 3 meters from the COM in a direction perpendicular to the motion. The effect is that the player's car rotates with an angular acceleration of $0.5 \mathrm{rad} / \mathrm{s}^{2}$. What is the torque of the collision?

EXERCISE 1.21

Imagine a blue hedgehog rolling down a 10 meter high hill with a mass m. Its inertia is given by $\frac{2}{5} m r^{2}$. What is its translational speed at the bottom of the hill?

